Fewer children than adults have been affected by the COVID-19 pandemic, and the clinical manifestations are distinct from those of adults. Some children particularly those with acute or chronic co-morbidities are likely to develop critical illness. Recently, a multisystem inflammatory syndrome (MIS-C) has been described in children with some of these patients requiring care in the pediatric ICU.
An international collaboration was formed to review the available evidence and develop evidence-based guidelines for the care of critically ill children with SARS-CoV-2 infection. Where the evidence was lacking, those gaps were replaced with consensus-based guidelines.
This process has generated 44 recommendations related to pediatric COVID-19 patients presenting with respiratory distress or failure, sepsis or septic shock, cardiopulmonary arrest, MIS-C, those requiring adjuvant therapies, or ECMO. Evidence to explain the milder disease patterns in children and the potential to use repurposed anti-viral drugs, anti-inflammatory or anti-thrombotic therapies are also described.
Brief summaries of pediatric SARS-CoV-2 infection in different regions of the world are included since few registries are capturing this data globally. These guidelines seek to harmonize the standards and strategies for intensive care that critically ill children with COVID-19 receive across the world.
Objectives: To compare the effects of a single nocturnal dose of 3 honey products (eucalyptus honey, citrus honey, or labiatae honey) to placebo (silan date extract) on nocturnal cough and difficulty sleeping associated with childhood upper respiratory tract infections (URIs).
Methods: A survey was administered to parents on 2 consecutive days, first on the day of presentation, when no medication had been given the previous evening, and the following day, when the study preparation was given before bedtime, based on a double-blind randomization plan. Participants included 300 children aged 1 to 5 years with URIs, nocturnal cough, and illness duration of ≤ 7 days from 6 general pediatric community clinics. Eligible children received a single dose of 10 g of eucalyptus honey, citrus honey, labiatae honey, or placebo administered 30 minutes before bedtime. Main outcome measures were cough frequency, cough severity, bothersome nature of cough, and child and parent sleep quality.
Results: In all 3 honey products and the placebo group, there was a significant improvement from the night before treatment to the night of treatment. However, the improvement was greater in the honey groups for all the
Conclusions: Parents rated the honey products higher than the silan date extract for symptomatic relief of their children's nocturnal cough and sleep difficulty due to URI. Honey may be a preferable treatment for cough and sleep difficulty associated with childhood URI.
The role of fluid resuscitation in the treatment of children with shock and life-threatening infections who live in resource-limited settings is not established.
We randomly assigned children with severe febrile illness and impaired perfusion to receive boluses of 20 to 40 ml of 5% albumin solution (albumin-bolus group) or 0.9% saline solution (saline-bolus group) per kilogram of body weight or no bolus (control group) at the time of admission to a hospital in Uganda, Kenya, or Tanzania (stratum A); children with severe hypotension were randomly assigned to one of the bolus groups only (stratum B). All children received appropriate antimicrobial treatment, intravenous maintenance fluids, and supportive care, according to guidelines. Children with malnutrition or gastroenteritis were excluded. The primary end point was 48-hour mortality; secondary end points included pulmonary edema, increased intracranial pressure, and mortality or neurologic sequelae at 4 weeks.
The data and safety monitoring committee recommended halting recruitment after 3141 of the projected 3600 children in stratum A were enrolled. Malaria status (57% overall) and clinical severity were similar across groups. The 48-hour mortality was 10.6% (111 of 1050 children), 10.5% (110 of 1047 children), and 7.3% (76 of 1044 children) in the albumin-bolus, saline-bolus, and control groups, respectively (relative risk for saline bolus vs. control, 1.44; 95% confidence interval [CI], 1.09 to 1.90; P=0.01; relative risk for albumin bolus vs. saline bolus, 1.01; 95% CI, 0.78 to 1.29; P=0.96; and relative risk for any bolus vs. control, 1.45; 95% CI, 1.13 to 1.86; P=0.003). The 4-week mortality was 12.2%, 12.0%, and 8.7% in the three groups, respectively (P=0.004 for the comparison of bolus with control). Neurologic sequelae occurred in 2.2%, 1.9%, and 2.0% of the children in the respective groups (P=0.92), and pulmonary edema or increased intracranial pressure occurred in 2.6%, 2.2%, and 1.7% (P=0.17), respectively. In stratum B, 69% of the children (9 of 13) in the albumin-bolus group and 56% (9 of 16) in the saline-bolus group died (P=0.45). The results were consistent across centers and across subgroups according to the severity of shock and status with respect to malaria, coma, sepsis, acidosis, and severe anemia.
Fluid boluses significantly increased 48-hour mortality in critically ill children with impaired perfusion in these resource-limited settings in Africa.
The role of fluid resuscitation in the treatment of children with shock and life-threatening infections who live in resource-limited settings is not established.
We randomly assigned children with severe febrile illness and impaired perfusion to receive boluses of 20 to 40 ml of 5% albumin solution (albumin-bolus group) or 0.9% saline solution (saline-bolus group) per kilogram of body weight or no bolus (control group) at the time of admission to a hospital in Uganda, Kenya, or Tanzania (stratum A); children with severe hypotension were randomly assigned to one of the bolus groups only (stratum B). All children received appropriate antimicrobial treatment, intravenous maintenance fluids, and supportive care, according to guidelines. Children with malnutrition or gastroenteritis were excluded. The primary end point was 48-hour mortality; secondary end points included pulmonary edema, increased intracranial pressure, and mortality or neurologic sequelae at 4 weeks.
The data and safety monitoring committee recommended halting recruitment after 3141 of the projected 3600 children in stratum A were enrolled. Malaria status (57% overall) and clinical severity were similar across groups. The 48-hour mortality was 10.6% (111 of 1050 children), 10.5% (110 of 1047 children), and 7.3% (76 of 1044 children) in the albumin-bolus, saline-bolus, and control groups, respectively (relative risk for saline bolus vs. control, 1.44; 95% confidence interval [CI], 1.09 to 1.90; P=0.01; relative risk for albumin bolus vs. saline bolus, 1.01; 95% CI, 0.78 to 1.29; P=0.96; and relative risk for any bolus vs. control, 1.45; 95% CI, 1.13 to 1.86; P=0.003). The 4-week mortality was 12.2%, 12.0%, and 8.7% in the three groups, respectively (P=0.004 for the comparison of bolus with control). Neurologic sequelae occurred in 2.2%, 1.9%, and 2.0% of the children in the respective groups (P=0.92), and pulmonary edema or increased intracranial pressure occurred in 2.6%, 2.2%, and 1.7% (P=0.17), respectively. In stratum B, 69% of the children (9 of 13) in the albumin-bolus group and 56% (9 of 16) in the saline-bolus group died (P=0.45). The results were consistent across centers and across subgroups according to the severity of shock and status with respect to malaria, coma, sepsis, acidosis, and severe anemia.
Fluid boluses significantly increased 48-hour mortality in critically ill children with impaired perfusion in these resource-limited settings in Africa.