Therapies to interrupt the progression of early coronavirus disease 2019 (Covid-19) remain elusive. Among them, convalescent plasma administered to hospitalized patients has been unsuccessful, perhaps because antibodies should be administered earlier in the course of illness.
We conducted a randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adult patients within 72 hours after the onset of mild Covid-19 symptoms. The primary end point was severe respiratory disease, defined as a respiratory rate of 30 breaths per minute or more, an oxygen saturation of less than 93% while the patient was breathing ambient air, or both. The trial was stopped early at 76% of its projected sample size because cases of Covid-19 in the trial region decreased considerably and steady enrollment of trial patients became virtually impossible.
A total of 160 patients underwent randomization. In the intention-to-treat population, severe respiratory disease developed in 13 of 80 patients (16%) who received convalescent plasma and 25 of 80 patients (31%) who received placebo (relative risk, 0.52; 95% confidence interval [CI], 0.29 to 0.94; P=0.03), with a relative risk reduction of 48%. A modified intention-to-treat analysis that excluded 6 patients who had a primary end-point event before infusion of convalescent plasma or placebo showed a larger effect size (relative risk, 0.40; 95% CI, 0.20 to 0.81). No solicited adverse events were observed.
Early administration of high-titer convalescent plasma against SARS-CoV-2 to mildly ill infected older adults reduced the progression of Covid-19. (Funded by the Bill and Melinda Gates Foundation and the Fundación INFANT Pandemic Fund; Dirección de Sangre y Medicina Transfusional del Ministerio de Salud number, PAEPCC19, Plataforma de Registro Informatizado de Investigaciones en Salud number, 1421, and ClinicalTrials.gov number, NCT04479163)
Chest CT is thought to be sensitive but less specific in diagnosing the 2019 coronavirus disease (COVID-19). The diagnostic value of CT is unclear. We aimed to compare the performance of CT and initial RT-PCR for clinically suspected COVID-19 patients outside the epicentre—Wuhan, China.
Patients clinically suspected of COVID-19 infection who underwent initial RT-PCR and chest CT at the same time were retrospectively enrolled. Two radiologists with specific training reviewed the CT images independently and final diagnoses of the presence or absence of COVID-19 was reached by consensus. With serial RT-PCR as reference standard, the performance of initial RT-PCR and chest CT was analysed. A strategy of combining initial RT-PCR and chest CT was analysed to study the additional benefit.
82 patients admitted to hospital between Jan 10, 2020 to Feb 28, 2020 were enrolled. 34 COVID-19 and 48 non-COVID-19 patients were identified by serial RT-PCR. The sensitivity, specificity was 79% (27/34) and 100% (48/48) for initial RT-PCR and 77% (26/34) and 96% (46/48) for chest CT. The image readers had a good interobserver agreement with Cohen's kappa of 0.69. No statistical difference was found in the diagnostic performance between initial RT-PCR and chest CT. The comprehensive strategy had a higher sensitivity of 94% (32/34).
Initial RT-PCR and chest CT had comparable diagnostic performance in identification of suspected COVID-19 patients outside the epidemic center. To compensate potential risk of false-negative PCR, chest CT should be applied for clinically suspected patients with negative initial RT-PCR.
Assessing whether long-term exposure to air pollution increases the severity of COVID-19 health outcomes, including death, is an important public health objective. Limitations in COVID-19 data availability and quality remain obstacles to conducting conclusive studies on this topic. At present, publicly available COVID-19 outcome data for representative populations are available only as area-level counts. Therefore, studies of long-term exposure to air pollution and COVID-19 outcomes using these data must use an ecological regression analysis, which precludes controlling for individual-level COVID-19 risk factors. We describe these challenges in the context of one of the first preliminary investigations of this question in the United States, where we found that higher historical PM2.5 exposures are positively associated with higher county-level COVID-19 mortality rates after accounting for many area-level confounders. Motivated by this study, we lay the groundwork for future research on this important topic, describe the challenges, and outline promising directions and opportunities.
Therapies to interrupt the progression of early coronavirus disease 2019 (Covid-19) remain elusive. Among them, convalescent plasma administered to hospitalized patients has been unsuccessful, perhaps because antibodies should be administered earlier in the course of illness.
We conducted a randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adult patients within 72 hours after the onset of mild Covid-19 symptoms. The primary end point was severe respiratory disease, defined as a respiratory rate of 30 breaths per minute or more, an oxygen saturation of less than 93% while the patient was breathing ambient air, or both. The trial was stopped early at 76% of its projected sample size because cases of Covid-19 in the trial region decreased considerably and steady enrollment of trial patients became virtually impossible.
A total of 160 patients underwent randomization. In the intention-to-treat population, severe respiratory disease developed in 13 of 80 patients (16%) who received convalescent plasma and 25 of 80 patients (31%) who received placebo (relative risk, 0.52; 95% confidence interval [CI], 0.29 to 0.94; P=0.03), with a relative risk reduction of 48%. A modified intention-to-treat analysis that excluded 6 patients who had a primary end-point event before infusion of convalescent plasma or placebo showed a larger effect size (relative risk, 0.40; 95% CI, 0.20 to 0.81). No solicited adverse events were observed.
Early administration of high-titer convalescent plasma against SARS-CoV-2 to mildly ill infected older adults reduced the progression of Covid-19. (Funded by the Bill and Melinda Gates Foundation and the Fundación INFANT Pandemic Fund; Dirección de Sangre y Medicina Transfusional del Ministerio de Salud number, PAEPCC19, Plataforma de Registro Informatizado de Investigaciones en Salud number, 1421, and ClinicalTrials.gov number, NCT04479163)