27647 is a member of OEIS A272285: primes of the form 43*n^2 - 537*n + 2971 in order of increasing nonnegative values of n, here n=31. The sequence up to n=50 can be generated as follows:
INPUT
L=[]
for n in [0..50]:
number = 43*n^2 - 537*n + 2971
print(n,number,is_prime(number))
if is_prime(number):
L.append(number)
print()
print(L)
OUTPUT
0 2971 True
1 2477 True
2 2069 True
3 1747 True
4 1511 True
5 1361 True
6 1297 True
7 1319 True
8 1427 True
9 1621 True
10 1901 True
11 2267 True
12 2719 True
13 3257 True
14 3881 True
15 4591 True
16 5387 True
17 6269 True
18 7237 True
19 8291 True
20 9431 True
21 10657 True
22 11969 True
23 13367 True
24 14851 True
25 16421 True
26 18077 True
27 19819 True
28 21647 True
29 23561 True
30 25561 True
31 27647 True
32 29819 True
33 32077 True
34 34421 True
35 36851 False
36 39367 True
37 41969 True
38 44657 True
39 47431 True
40 50291 True
41 53237 False
42 56269 True
43 59387 True
44 62591 True
45 65881 True
46 69257 True
47 72719 True
48 76267 False
49 79901 True
50 83621 True
[2971, 2477, 2069, 1747, 1511, 1361, 1297, 1319, 1427, 1621, 1901, 2267, 2719, 3257, 3881, 4591, 5387, 6269, 7237, 8291, 9431, 10657, 11969, 13367, 14851, 16421, 18077, 19819, 21647, 23561, 25561, 27647, 29819, 32077, 34421, 39367, 41969, 44657, 47431, 50291, 56269, 59387, 62591, 65881, 69257, 72719, 79901, 83621]
27647 + SOD(26) = 27673 is also prime.
27647 can be rendered as a digit equation as follows:
2 + 7 - 6 = -4 + 7